silver | Stable | Atomic mass* | Mole | |-------------------|--------------|----------| | isotope | | fraction | | ¹⁰⁷ Ag | 106.905 097 | 0.518 39 | | 109 Ag | 108.904 752 | 0.481 61 | ^{*} Atomic mass given in unified atomic mass units, u. Half-life of redioactive isotope Less than 1 second ## Important applications of stable and/or radioactive isotopes Isotopes in geochronology 1) The ratio of ¹⁰⁷Pd/¹⁰⁷Ag is used in methods of geochronology to help date major thermal events in the solar system. Although ¹⁰⁷Ag is abundant naturally, ¹⁰⁷Ag is also the daughter product by beta decay of ¹⁰⁷Pd. If both excess ¹⁰⁷Ag and ¹⁰⁷Pd are present in the a cosmic sample, the material would have formed sometime after the half life of ¹⁰⁷Pd (6.5 million years) and the ratio of ¹⁰⁷Pd/¹⁰⁷Ag can be measured and used to help determine the starting point of that decay process and thus the formation of the material. Figure 1: The crab nebula seen above is an example of an exploding star which is responsible for the release of heavy elements like 107 Ag and 107 Pd in to space. ## Isotopes as environmental tracers 1) Variability of silver isotope fractionation (¹⁰⁷Ag/¹⁰⁹Ag) as evidence of anthropogenic input. ## Isotopes in industry - 1) ¹⁰⁷Ag is being studied as a possible target for cyclotron production of ¹⁰³Pd, although the current targets are ¹⁰³Rh or ¹⁰⁴Pd. 2) ¹⁰⁹Ag can be used to produce ^{110m}Ag for use as a gamma reference source.